worlds fair ornament

Atwood's machine ] bag of marbles ] balance moon stone ] ball up/down ] bead parabola accelerometer ] boat anchor lake ] boat time ] bobbin on incline ] bosun's chair ] bouncing ball ] bowling ball rolling ] bug on band ] bursting shell ] falling chain ] Feynman's restaurant problem ] five pills ] flying cable ] forced pendulum ] gold mountain ] half pills ] hallway pole ] impelled rod ] inelastic relativistic collision ] infinite pulleys ] mass on an incline ] maximum angle of deflection ] packs of shirts ] particle in bowl ] particle in cone ] particle on sphere ] particle points parabola ] pile of bricks ] pion muon neutrino ] piston ramp spring ] plank weight trough ] rocket vs. jet ] roll without slipping ] rough inclined plane ] shooting marbles ] speedometer test ] three balls ] three logs ] turntable cart ] two rolling balls exercise ] wheel and block ] whirling pendulum ] [ worlds fair ornament ]


An ornament for a courtyard at a World's Fair is to be made up of four identical, frictionless metal spheres, each weighing 2√6 ton-wts . The spheres are to be arranged as shown, with three resting on a horizontal surface and touching each other; the fourth is to rest freely on the other three. The bottom three are kept from separating by spot welds at the points of contact with each other. Allowing for a factor of 3, how much tension must the spot welds withstand?


Solutions (listed by author)

Michael A. Gottlieb (using forces) (pdf, 188K)  [Much thanks to Doug Krajnovich and Samuel Hornus for their comments and corrections. mg]

Michael A. Gottlieb (using virtual work) (pdf, 70K)  [Geoff Wright gave me this  idea. mg]


Copyright © 2000-2013 Michael A. Gottlieb. All rights reserved.