pile of bricks

Atwood's machine ] bag of marbles ] balance moon stone ] ball up/down ] bead parabola accelerometer ] boat anchor lake ] boat time ] bobbin on incline ] bosun's chair ] bouncing ball ] bowling ball rolling ] bug on band ] bursting shell ] falling chain ] Feynman's restaurant problem ] five pills ] flying cable ] forced pendulum ] gold mountain ] half pills ] hallway pole ] impelled rod ] inelastic relativistic collision ] infinite pulleys ] mass on an incline ] maximum angle of deflection ] packs of shirts ] particle in bowl ] particle in cone ] particle on sphere ] particle points parabola ] [ pile of bricks ] pion muon neutrino ] piston ramp spring ] plank weight trough ] rocket vs. jet ] roll without slipping ] rough inclined plane ] shooting marbles ] speedometer test ] three balls ] three logs ] turntable cart ] two rolling balls ] wheel and block ] whirling pendulum ] worlds fair ornament ]

A uniform brick of length L is laid on a smooth horizontal surface. Other equal bricks are now piled on as shown, so that the sides form continuous planes, but the ends are offset at each brick by a distance L/a, where a is an integer. How many bricks n can be used in this manner before the pile topples over?


Solutions (listed by author)

Chris Siegert (pdf, 64K)


Copyright © 2000-2013 Michael A. Gottlieb. All rights reserved.