five pills

Atwood's machine ] bag of marbles ] balance moon stone ] ball up/down ] bead parabola accelerometer ] boat anchor lake ] boat time ] bobbin on incline ] bosun's chair ] bouncing ball ] bowling ball rolling ] bug on band ] bursting shell ] falling chain ] Feynman's restaurant problem ] [ five pills ] flying cable ] forced pendulum ] gold mountain ] half pills ] hallway pole ] impelled rod ] inelastic relativistic collision ] infinite pulleys ] mass on an incline ] maximum angle of deflection ] packs of shirts ] particle in bowl ] particle in cone ] particle on sphere ] particle points parabola ] pile of bricks ] pion muon neutrino ] piston ramp spring ] plank weight trough ] rocket vs. jet ] roll without slipping ] rough inclined plane ] shooting marbles ] speedometer test ] three balls ] three logs ] turntable cart ] two rolling balls ] wheel and block ] whirling pendulum ] worlds fair ornament ]


Suppose you are taking one each of 5 different types of pills every day but you donít like having to open and close 5 different bottles, so at the beginning of each (30-day) month you put 30 of each type of pill into one big bottle. When it is time to take your pills, you draw them out of the big bottle one at a time until you have (at least) one of each type. On the last day of the month you will draw exactly 5 pills and they will all be different (because thatís all thatís left in the bottle), but on other days you will generally have to draw more than 5 pills in order to have (at least) one of each type. So, the question is: On the first day of each month (when there are 150 pills in the bottle), how many pills, on average, must you draw from the bottle in order to have (at least) one of each?


Solutions (listed by author)

Michael A. Gottlieb #1 (pdf, 76K)

Michael A. Gottlieb #2 (Mathematica, 8K)


Copyright © 2000-2013 Michael A. Gottlieb. All rights reserved.