rough inclined plane

A particle of weight W rests on a rough inclined plane that makes an angle alpha with the horizontal.
(a) If the co-efficient of static friction $\mu=2 \tan \alpha$, find the least horizontal force $\mathrm{H}_{\text {min }}$, acting transverse to the slope of the plane that will cause the particle to move.
(b) In what direction will it go?

Solution by Rudy Arthur:

free body diagram

The force on the block in the plane is $\vec{H}+\vec{W} \sin \alpha$, while the minimum force required to overcome static friction is $(\vec{W} \cos \alpha)(2 \tan \alpha)$. We can find $H_{\text {min }}$, the force that will just cause the particle to move, by equating these and squaring:

$$
\left(\vec{H}_{\min }+\vec{W} \sin \alpha\right)^{2}=\left(H_{\min }^{2}+\vec{H}_{\min } \cdot \vec{W} \sin \alpha+W^{2} \sin ^{2} \alpha\right)=((\vec{W} \cos \alpha)(2 \tan \alpha))^{2} .
$$

After some cancellation (recalling that \vec{H} and \vec{W} are perpendicular, so their dot product is zero) this becomes,
(a) $\quad H_{\text {min }}=\sqrt{3} W \sin \alpha$.

When $H=H_{\text {min }}$ the components of the force in the inclined plane are $\sqrt{3} W \sin \alpha$ (horizontal) and $W \sin \alpha$ (vertical), so $\tan \phi=\sqrt{3}$. Thus,
(b) the particle moves down at an angle $\phi=60^{\circ}$.

