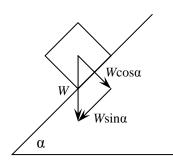
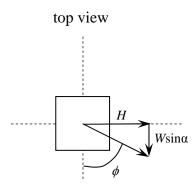

rough inclined plane




A particle of weight W rests on a rough inclined plane that makes an angle alpha with the horizontal.

- (a) If the co-efficient of static friction $\mu=2$ tan α , find the least horizontal force H_{min} , acting transverse to the slope of the plane that will cause the particle to move.
- (b) In what direction will it go?

Solution by Rudy Arthur:

The force on the block in the plane is $\vec{H} + \vec{W} \sin \alpha$, while the minimum force required to overcome static friction is $(\vec{W} \cos \alpha)(2 \tan \alpha)$. We can find H_{\min} , the force that will just cause the particle to move, by equating these and squaring:

$$(\vec{H}_{\min} + \vec{W}\sin\alpha)^2 = (H_{\min}^2 + \vec{H}_{\min} \cdot \vec{W}\sin\alpha + W^2\sin^2\alpha) = ((\vec{W}\cos\alpha)(2\tan\alpha))^2.$$

After some cancellation (recalling that \vec{H} and \vec{W} are perpendicular, so their dot product is zero) this becomes,

(a)
$$H_{\min} = \sqrt{3}W\sin\alpha$$
.

When $H=H_{\rm min}$ the components of the force in the inclined plane are $\sqrt{3}W\sin\alpha$ (horizontal) and $W\sin\alpha$ (vertical), so $\tan\phi=\sqrt{3}$. Thus,

(b) the particle moves down at an angle $\phi = 60^{\circ}$.