## maximum angle of deflection

A moving particle of mass M collides perfectly elastically with a stationary particle of mass $\mathrm{m}<\mathrm{M}$. Find the maximum possible angle through which the incident particle can be deflected.

## Solution by Julien Clément-Cottuz:

The angle of deflection $\theta$ is the angle of which the M particle is deviated. I choose (in order to simplify the trigonometric calculus) the ( $\mathrm{x}, \mathrm{y}$ ) axes so that the angle between x and the M direction is $\theta / 2$.

v is the velocity before the collision and, $\mathrm{v}_{1}$ and $\mathrm{v}_{2}$ are the velocities of M and m after the collision.
Conservation of energy:

$$
\begin{equation*}
E=\frac{1}{2} M v^{2}=\frac{1}{2} M v_{1}^{2}+\frac{1}{2} m v_{2}^{2} \tag{1}
\end{equation*}
$$

Conservation of momentum:

$$
\begin{align*}
& P_{x}=M v \cos (\theta / 2)=M v_{1} \cos (\theta / 2)+m v_{2} \cos (\beta)  \tag{2}\\
& P_{y}=-M v \sin (\theta / 2)=M v_{1} \sin (\theta / 2)-m v_{2} \sin (\beta) \tag{3}
\end{align*}
$$

From (2) and (3) you get two formulae for v 2 and substitute them into (1):

$$
M\left(v^{2}-v_{1}^{2}\right)=m v_{2}^{2}=m\left[\frac{M \cos (\theta / 2)\left(v-v_{1}\right)}{m \cos (\beta)}\right]\left[\frac{M \sin (\theta / 2)\left(v+v_{1}\right)}{m \sin (\beta)}\right]
$$

Simplifying:

$$
1=\frac{M}{m} \frac{\cos (\theta / 2) \sin (\theta / 2)}{\cos (\beta) \sin (\beta)}=\frac{M}{m} \frac{\sin (\theta)}{\sin (2 \beta)}
$$

The deflection angle is maximum when $\sin (2 \beta)=1$ (so $\beta=\pi / 4$ ), and $\sin (\theta)=m /$.

