maximum angle of deflection

A moving particle of mass M collides perfectly elastically with a stationary particle of mass $m<M$. Find the maximum possible angle through which the incident particle can be deflected.

Solution by Rudy Arthur:

Call the velocity of the moving particle \vec{u} before the collision and \vec{v}_{1} after the collision; call the velocity of the originally stationary particle \vec{v}_{2} after the collision. We seek the maximum angle between \vec{u} and \vec{v}_{1}.

By conservation of momentum: $M \vec{u}=M \vec{v}_{1}+m \vec{v}_{2}$.
By conservation of energy: $\frac{1}{2} M u^{2}=\frac{1}{2} M v_{1}{ }^{2}+\frac{1}{2} m v_{2}{ }^{2}$.
Rearranging (1) gives

$$
\begin{equation*}
\frac{M}{m}\left(\vec{u}-\vec{v}_{1}\right)=\vec{v}_{2} . \tag{3}
\end{equation*}
$$

Substituting into (2) gives:

$$
\begin{align*}
& m M\left(u^{2}-v_{1}^{2}\right)=M^{2}\left(u^{2}-2 \vec{u} \cdot \vec{v}_{1}+v_{1}^{2}\right), \tag{4}\\
& m M\left(u^{2}-v_{1}^{2}\right)=M^{2}\left(u^{2}-2 u v_{1} \cos \theta+v_{1}^{2}\right) \tag{5}
\end{align*}
$$

where θ is the angle of deflection. Rearranging,

$$
\begin{equation*}
\cos \theta=\frac{u}{2 v_{1}}\left(1-\frac{m}{M}\right)+\frac{v_{1}}{2 u}\left(1+\frac{m}{M}\right) \tag{6}
\end{equation*}
$$

When $\cos \theta$ is extremal θ is extremal, thus to find the maximum angle of deflection, differentiate the right side of (6) with respect to v_{1}, and solve for zero.

$$
\begin{equation*}
v_{1}=u \sqrt{\frac{1-\frac{m}{M}}{1+\frac{m}{M}}} \tag{7}
\end{equation*}
$$

Substitute (7) into (6) and square both sides,

$$
\begin{align*}
& \cos ^{2} \theta=\left(1+\frac{m}{M}\right)\left(1-\frac{m}{M}\right) \tag{8}\\
& \left(\frac{m}{M}\right)^{2}=1-\cos ^{2} \theta=\sin ^{2} \theta \tag{9}
\end{align*}
$$

So the maximum angle of deflection is $\theta=\sin ^{-1}\left(\frac{m}{M}\right)$.

