Infinite pulleys

An infinite series of pulleys and masses is arranged as shown, with $m_{0}=1 /(1-t)$, and $m_{i}=t^{i-1}$ for $i>0$, with $0<t<1$. At the moment the pulleys are released from rest, what is the acceleration a of mass m_{0} ?

1 Solution by Fabrizio Gangemi

We solve the problem for a finite number of masses 0 through n, and then let $n \rightarrow \infty$.
If a_{i} denotes the acceleration of mass m_{i}, and T_{i} the tension of the string connected to it, the equation of motion for mass m_{i} is

$$
\begin{equation*}
T_{i}-m_{i} g=m_{i} a_{i} . \tag{1}
\end{equation*}
$$

The force acting upon pulley i (for $i>0$) is $T_{i-1}-2 T_{i}$. If $a_{p, i}$ is the acceleration of pulley i and $m_{p, i}$ is its mass, the equation of motion $T_{i-1}-2 T_{i}=m_{p, i} a_{p, i}$, with the assumption $m_{p, i}=0$, implies $T_{i-1}=2 T_{i}$. Hence the tensions can be expressed as

$$
\begin{aligned}
T_{i} & =\frac{T_{0}}{2^{i}}, \quad i=0, \ldots, n-1 \\
T_{n} & =\frac{T_{0}}{2^{n-1}}
\end{aligned}
$$

For mass n the tension is the same as for mass $n-1$ because they share the same string.
The accelerations of masses and pulleys are constrained by the fact that each string is inextensible:

$$
\begin{aligned}
a_{0}+a_{p, 1} & =0, \\
a_{1}-a_{p, 1}+a_{p, 2}-a_{p, 1} & =0 \\
& \cdots \\
a_{n-1}-a_{p, n-1}+a_{n}-a_{p, n-1} & =0
\end{aligned}
$$

Rearranging the terms, one has

$$
\begin{aligned}
a_{p, 1} & =-a_{0}, \\
a_{p, 2} & =2 a_{p, 1}-a_{1}, \\
& \cdots \\
a_{n} & =2 a_{p, n-1}-a_{n-1} .
\end{aligned}
$$

By substituting $a_{p, i}$ from each equation into the next one, the nth acceleration can be obtained as

$$
\begin{equation*}
a_{n}=-\left(2^{n-1} a_{0}+2^{n-2} a_{1}+\ldots+a_{n-1}\right)=-2^{n-1} \sum_{i=0}^{n-1} \frac{a_{i}}{2^{i}} . \tag{2}
\end{equation*}
$$

We may now rewrite the equations of motion 1 in the following form, where each term is divided by g, and the notations $\tau=T_{0} / g, \alpha_{i}=a_{i} / g$ are introduced:

$$
\begin{align*}
\frac{\tau}{2^{i} m_{i}} & =1+\alpha_{i} \quad i=0, \ldots, n-1 \tag{3}\\
\frac{\tau}{2^{n-1} m_{n}} & =1-2^{n-1} \sum_{i=0}^{n-1} \frac{\alpha_{i}}{2^{i}} . \tag{4}
\end{align*}
$$

To take advantage of equation 2 , we now multiply equation 3 by 2^{n-1-i} and sum over $i=0, \ldots, n-1$ and then we add the result to equation 4 , thus obtaining an equation for τ :

$$
\tau\left(\frac{1}{2^{n-1} m_{n}}+\sum_{i=0}^{n-1} \frac{2^{n-i-1}}{2^{i} m_{i}}\right)=1+\sum_{i=0}^{n-1} 2^{n-i-1}
$$

At this point we use the prescription for the masses, $m_{i}=t^{i-1}, i=1, \ldots, n$, to obtain

$$
\tau\left(\frac{1}{(2 t)^{n-1}}+\frac{2^{n-1}}{m_{0}}+2^{n-1} t \sum_{i=1}^{n-1} \frac{1}{(4 t)^{i}}\right)=2^{n} .
$$

Finally, after multiplying both sides by $m_{0} / 2^{n-1}$, we find the following expression for the tension:

$$
\tau=\frac{2 m_{0}}{1+m_{0}\left(\frac{1}{(4 t)^{n-1}}+t \sum_{i=1}^{n-1} \frac{1}{(4 t)^{i}}\right)} .
$$

The acceleration of mass m_{0}, according to equation 3 with $i=0$, is given by

$$
\begin{equation*}
\alpha_{0}=\frac{\tau}{m_{0}}-1=\frac{2}{1+m_{0}\left(\frac{1}{(4 t)^{n-1}}+t \sum_{i=1}^{n-1} \frac{1}{(4 t)^{i}}\right)}-1 . \tag{5}
\end{equation*}
$$

Now, to take the limit for $n \rightarrow \infty$, we have to distinguish between two cases:

- when $4 t \leq 1$, the denominator on the right-hand side of equation 5 diverges, and we have $\alpha_{0} \rightarrow-1$;
- when $4 t>1$, we get

$$
\alpha_{0} \rightarrow \frac{2}{1+\frac{t}{1-t}\left(\frac{1}{1-\frac{1}{4 t}}-1\right)}-1=\frac{(2 t-1)^{2}}{4 t^{2}-6 t+1} .
$$

Figure 1: Plots of equation 5 for $n=10,20,50$ and of equation 6 (black curve).

The denominator of the last expression can be written as $-4\left(t-t_{-}\right)\left(t_{+}-t\right)$, with $t_{ \pm}=(3 \pm \sqrt{5}) / 4$. Since $t_{-}<1 / 4$ and $t_{+}>1$, there is no singularity in the range $(1 / 4,1)$.
The solution may be summarized as

$$
\alpha_{0}=\left\{\begin{array}{cc}
-1 & 0<t \leq \frac{1}{4} \tag{6}\\
-\frac{(t-1 / 2)^{2}}{\left(t-t_{-}\right)\left(t_{+}-t\right)} & \frac{1}{4}<t<1
\end{array}\right.
$$

It is worth noting that α_{0}, as a function of t, is continuous at $t=1 / 4$, but its derivative is not. The discontinuity of the derivative emerges after the limit $n \rightarrow \infty$ is taken: indeed, as can be seen by equation $5, \alpha_{0}$ is an analytic function of t in the whole range $(0,1)$ for n finite. This is also shown in Figure 1, where equation 6 (black curve) is compared with equation 5 for some values of n.

2 Sign of the acceleration

The following argument may be used to determine the sign of the acceleration of mass m_{0}.
If we sum equation 1 over i and take into account that each tension is related to T_{0} through $T_{i}=T_{0} / 2^{i}$, we have

$$
\sum_{i=0}^{\infty} m_{i} a_{i}=\sum_{i=0}^{\infty} \frac{T_{0}}{2^{i}}-\sum_{i=0}^{\infty} m_{i} g=2 T_{0}-2 m_{0} g
$$

where the identity $\sum_{i>0} m_{i}=m_{0}$ has been used. Now, if we divide by $2 m_{0}$, which is the mass of the whole system, we get the acceleration of the centre of mass:

$$
a_{C M}=\frac{T_{0}}{m_{0}}-g .
$$

This coincides with the acceleration a_{0} of m_{0} (see equation 1 for $i=0$). Since the external forces are the total weight (downward) and the tension of the uppermost string (upward), which is a reaction force, $a_{C M}$ cannot be upward, and the same holds for a_{0}. Therefore, we conclude $a_{0} \leq 0$.

