Infinite pulleys

An infinite series of pulleys and masses is arranged as shown, with mg = 1/(1 —t), and m; = t*~! for
1> 0, with 0 < ¢t < 1. At the moment the pulleys are released from rest, what is the acceleration a of
mass mqg?
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1 Solution by Fabrizio Gangemi

We solve the problem for a finite number of masses 0 through n, and then let n — oo.
If a; denotes the acceleration of mass m;, and T; the tension of the string connected to it, the equation
of motion for mass m; is

Ti — m;g = my;a; . (1)

The force acting upon pulley i (for ¢ > 0) is T;_1 — 2T;. If a,; is the acceleration of pulley i and m,; is
its mass, the equation of motion T;_; — 2T; = m,, ;a,;, with the assumption m,,; = 0, implies T;_; = 27;.
Hence the tensions can be expressed as

To .

E = 57 ZZO,...7n—17
To

T = 3257 -

For mass n the tension is the same as for mass n — 1 because they share the same string.
The accelerations of masses and pulleys are constrained by the fact that each string is inextensible:

ag + ap1 = 0 R
a1 —ap1+apz—ap1 = 0,
Qn—1 —Apn—1+ap —App-1 = 0.



Rearranging the terms, one has

ap1 = —ao,
Gp,2 = 2ap71 —aj ,
ap = 2ap,n—1 —Qan-—1 -

By substituting a,; from each equation into the next one, the nth acceleration can be obtained as

n—1
_ _ _ a;
ap, = —(2" 1a0+2" 2a1+...+an_1):—2" 1252 (2)
i=0
We may now rewrite the equations of motion 1 in the following form, where each term is divided by g,
and the notations 7 = Tp/g, o; = a;/g are introduced:

T .
i 1+ oy i=0,...,n—1, (3)
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To take advantage of equation 2, we now multiply equation 3 by 2"~'=% and sum over i = 0,...,n — 1

and then we add the result to equation 4, thus obtaining an equation for 7:

1 n—1 27’L—i—1 n—1 .
T ——— + . =14+) 2"
Qn—lmn Z ZZmi Z
=0 =0
At this point we use the prescription for the masses, m; = t'~1, i = 1,...,n, to obtain

1 gn-1 L=
n— __on
TR —— t; = 2"

Finally, after multiplying both sides by mg/2" !, we find the following expression for the tension:

1
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The acceleration of mass mg, according to equation 3 with ¢ = 0, is given by

2
ap = —1= —1. (5)
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Now, to take the limit for n — oo, we have to distinguish between two cases:

T =

e when 4t < 1, the denominator on the right-hand side of equation 5 diverges, and we have ag — —1;

e when 4t > 1, we get

. 2 (2t — 1)2
ap - :27
1+L<%71) 42 — 6t + 1
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Figure 1: Plots of equation 5 for n = 10,20, 50 and of equation 6 (black curve).

The denominator of the last expression can be written as —4(t — t_)(t; — t), with t+ = (3 + v/5)/4.
Since t— < 1/4 and t4 > 1, there is no singularity in the range (1/4,1).
The solution may be summarized as

-1 0<t<i
ap = (6)

t—1/2)2
(t—(t_)(/tj—t) g <t<l

[=

It is worth noting that «p, as a function of ¢, is continuous at t = 1/4, but its derivative is not. The
discontinuity of the derivative emerges after the limit n — oo is taken: indeed, as can be seen by equation
5, ap is an analytic function of ¢ in the whole range (0,1) for n finite. This is also shown in Figure 1,
where equation 6 (black curve) is compared with equation 5 for some values of n.

2 Sign of the acceleration

The following argument may be used to determine the sign of the acceleration of mass my.
If we sum equation 1 over 7 and take into account that each tension is related to Ty through T; = Ty /2°,

we have
Zmiai = 25 - Zmig = 2Ty — 2mog ,
i=0 i=0 i=0

where the identity Zi>0 m; = myg has been used. Now, if we divide by 2mg, which is the mass of the
whole system, we get the acceleration of the centre of mass:

To
acMmM = — —49g
mo



This coincides with the acceleration ag of mg (see equation 1 for ¢ = 0). Since the external forces are the
total weight (downward) and the tension of the uppermost string (upward), which is a reaction force,
acp cannot be upward, and the same holds for ag. Therefore, we conclude ag < 0.



