
Infinite pulleys

An infinite series of pulleys and masses is arranged as shown, with m0 = 1/(1 − t), and mi = ti−1 for
i > 0, with 0 < t < 1. At the moment the pulleys are released from rest, what is the acceleration a of
mass m0?

1 Solution by Fabrizio Gangemi

We solve the problem for a finite number of masses 0 through n, and then let n→∞.
If ai denotes the acceleration of mass mi, and Ti the tension of the string connected to it, the equation
of motion for mass mi is

Ti −mig = miai . (1)

The force acting upon pulley i (for i > 0) is Ti−1 − 2Ti. If ap,i is the acceleration of pulley i and mp,i is
its mass, the equation of motion Ti−1−2Ti = mp,iap,i, with the assumption mp,i = 0, implies Ti−1 = 2Ti.
Hence the tensions can be expressed as

Ti =
T0
2i

, i = 0, . . . , n− 1 ,

Tn =
T0

2n−1
.

For mass n the tension is the same as for mass n− 1 because they share the same string.
The accelerations of masses and pulleys are constrained by the fact that each string is inextensible:

a0 + ap,1 = 0 ,

a1 − ap,1 + ap,2 − ap,1 = 0 ,

. . .

an−1 − ap,n−1 + an − ap,n−1 = 0 .
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Rearranging the terms, one has

ap,1 = −a0 ,
ap,2 = 2ap,1 − a1 ,

. . .

an = 2ap,n−1 − an−1 .

By substituting ap,i from each equation into the next one, the nth acceleration can be obtained as

an = −(2n−1a0 + 2n−2a1 + . . .+ an−1) = −2n−1
n−1∑
i=0

ai
2i
. (2)

We may now rewrite the equations of motion 1 in the following form, where each term is divided by g,
and the notations τ = T0/g, αi = ai/g are introduced:

τ

2imi
= 1 + αi i = 0, . . . , n− 1 , (3)

τ

2n−1mn
= 1− 2n−1

n−1∑
i=0

αi

2i
. (4)

To take advantage of equation 2, we now multiply equation 3 by 2n−1−i and sum over i = 0, . . . , n − 1
and then we add the result to equation 4, thus obtaining an equation for τ :

τ

(
1

2n−1mn
+

n−1∑
i=0

2n−i−1

2imi

)
= 1 +

n−1∑
i=0

2n−i−1 .

At this point we use the prescription for the masses, mi = ti−1, i = 1, . . . , n, to obtain

τ

(
1

(2t)n−1
+

2n−1

m0
+ 2n−1t

n−1∑
i=1

1

(4t)i

)
= 2n .

Finally, after multiplying both sides by m0/2
n−1, we find the following expression for the tension:

τ =
2m0

1 +m0

(
1

(4t)n−1 + t
∑n−1

i=1
1

(4t)i

) .

The acceleration of mass m0, according to equation 3 with i = 0, is given by

α0 =
τ

m0
− 1 =

2

1 +m0

(
1

(4t)n−1 + t
∑n−1

i=1
1

(4t)i

) − 1 . (5)

Now, to take the limit for n→∞, we have to distinguish between two cases:

• when 4t ≤ 1, the denominator on the right-hand side of equation 5 diverges, and we have α0 → −1;

• when 4t > 1, we get

α0 →
2

1 + t
1−t

(
1

1− 1
4t

− 1
) − 1 =

(2t− 1)2

4t2 − 6t+ 1
.
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Figure 1: Plots of equation 5 for n = 10, 20, 50 and of equation 6 (black curve).

The denominator of the last expression can be written as −4(t − t−)(t+ − t), with t± = (3 ±
√

5)/4.
Since t− < 1/4 and t+ > 1, there is no singularity in the range (1/4, 1).
The solution may be summarized as

α0 =


−1 0 < t ≤ 1

4

− (t−1/2)2
(t−t−)(t+−t)

1
4 < t < 1

(6)

It is worth noting that α0, as a function of t, is continuous at t = 1/4, but its derivative is not. The
discontinuity of the derivative emerges after the limit n→∞ is taken: indeed, as can be seen by equation
5, α0 is an analytic function of t in the whole range (0, 1) for n finite. This is also shown in Figure 1,
where equation 6 (black curve) is compared with equation 5 for some values of n.

2 Sign of the acceleration

The following argument may be used to determine the sign of the acceleration of mass m0.
If we sum equation 1 over i and take into account that each tension is related to T0 through Ti = T0/2

i,
we have

∞∑
i=0

miai =
∞∑
i=0

T0
2i
−
∞∑
i=0

mig = 2T0 − 2m0g ,

where the identity
∑

i>0mi = m0 has been used. Now, if we divide by 2m0, which is the mass of the
whole system, we get the acceleration of the centre of mass:

aCM =
T0
m0
− g .
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This coincides with the acceleration a0 of m0 (see equation 1 for i = 0). Since the external forces are the
total weight (downward) and the tension of the uppermost string (upward), which is a reaction force,
aCM cannot be upward, and the same holds for a0. Therefore, we conclude a0 ≤ 0.
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