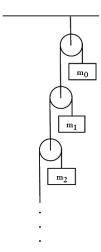
Infinite pulleys

An infinite series of pulleys and masses is arranged as shown, with $m_0 = 1/(1-t)$, and $m_i = t^{i-1}$ for i > 0, with 0 < t < 1. At the moment the pulleys are released from rest, what is the acceleration a of mass m_0 ?



1 Solution by Fabrizio Gangemi

We solve the problem for a finite number of masses 0 through n, and then let $n \to \infty$. If a_i denotes the acceleration of mass m_i , and T_i the tension of the string connected to it, the equation of motion for mass m_i is

$$T_i - m_i g = m_i a_i . (1)$$

The force acting upon pulley i (for i > 0) is $T_{i-1} - 2T_i$. If $a_{p,i}$ is the acceleration of pulley i and $m_{p,i}$ is its mass, the equation of motion $T_{i-1} - 2T_i = m_{p,i}a_{p,i}$, with the assumption $m_{p,i} = 0$, implies $T_{i-1} = 2T_i$. Hence the tensions can be expressed as

$$T_i = \frac{T_0}{2^i}, \quad i = 0, \dots, n-1,$$

$$T_n = \frac{T_0}{2^{n-1}}.$$

For mass n the tension is the same as for mass n-1 because they share the same string. The accelerations of masses and pulleys are constrained by the fact that each string is inextensible:

$$\begin{array}{rcl} a_0 + a_{p,1} & = & 0 , \\ a_1 - a_{p,1} + a_{p,2} - a_{p,1} & = & 0 , \\ & & \cdots & \\ a_{n-1} - a_{p,n-1} + a_n - a_{p,n-1} & = & 0 . \end{array}$$

Rearranging the terms, one has

$$a_{p,1} = -a_0$$
,
 $a_{p,2} = 2a_{p,1} - a_1$,
...
$$a_n = 2a_{p,n-1} - a_{n-1}$$
.

By substituting $a_{p,i}$ from each equation into the next one, the nth acceleration can be obtained as

$$a_n = -(2^{n-1}a_0 + 2^{n-2}a_1 + \dots + a_{n-1}) = -2^{n-1}\sum_{i=0}^{n-1} \frac{a_i}{2^i}.$$
 (2)

We may now rewrite the equations of motion 1 in the following form, where each term is divided by g, and the notations $\tau = T_0/g$, $\alpha_i = a_i/g$ are introduced:

$$\frac{\tau}{2^i m_i} = 1 + \alpha_i \qquad i = 0, \dots, n - 1 ,$$
 (3)

$$\frac{\tau}{2^{n-1}m_n} = 1 - 2^{n-1} \sum_{i=0}^{n-1} \frac{\alpha_i}{2^i} . {4}$$

To take advantage of equation 2, we now multiply equation 3 by 2^{n-1-i} and sum over $i=0,\ldots,n-1$ and then we add the result to equation 4, thus obtaining an equation for τ :

$$\tau \left(\frac{1}{2^{n-1}m_n} + \sum_{i=0}^{n-1} \frac{2^{n-i-1}}{2^i m_i} \right) = 1 + \sum_{i=0}^{n-1} 2^{n-i-1} .$$

At this point we use the prescription for the masses, $m_i = t^{i-1}$, i = 1, ..., n, to obtain

$$\tau \left(\frac{1}{(2t)^{n-1}} + \frac{2^{n-1}}{m_0} + 2^{n-1}t \sum_{i=1}^{n-1} \frac{1}{(4t)^i} \right) = 2^n.$$

Finally, after multiplying both sides by $m_0/2^{n-1}$, we find the following expression for the tension:

$$\tau = \frac{2m_0}{1 + m_0 \left(\frac{1}{(4t)^{n-1}} + t \sum_{i=1}^{n-1} \frac{1}{(4t)^i}\right)} .$$

The acceleration of mass m_0 , according to equation 3 with i = 0, is given by

$$\alpha_0 = \frac{\tau}{m_0} - 1 = \frac{2}{1 + m_0 \left(\frac{1}{(4t)^{n-1}} + t \sum_{i=1}^{n-1} \frac{1}{(4t)^i}\right)} - 1.$$
 (5)

Now, to take the limit for $n \to \infty$, we have to distinguish between two cases:

- when $4t \le 1$, the denominator on the right-hand side of equation 5 diverges, and we have $\alpha_0 \to -1$;
- when 4t > 1, we get

$$\alpha_0 \to \frac{2}{1 + \frac{t}{1 - t} \left(\frac{1}{1 - \frac{1}{4t}} - 1\right)} - 1 = \frac{(2t - 1)^2}{4t^2 - 6t + 1}$$
.

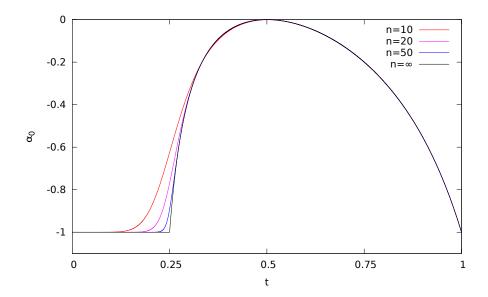


Figure 1: Plots of equation 5 for n = 10, 20, 50 and of equation 6 (black curve).

The denominator of the last expression can be written as $-4(t-t_-)(t_+-t)$, with $t_{\pm}=(3\pm\sqrt{5})/4$. Since $t_-<1/4$ and $t_+>1$, there is no singularity in the range (1/4,1). The solution may be summarized as

$$\alpha_0 = \begin{cases} -1 & 0 < t \le \frac{1}{4} \\ -\frac{(t-1/2)^2}{(t-t_-)(t_+-t)} & \frac{1}{4} < t < 1 \end{cases}$$
 (6)

It is worth noting that α_0 , as a function of t, is continuous at t = 1/4, but its derivative is not. The discontinuity of the derivative emerges after the limit $n \to \infty$ is taken: indeed, as can be seen by equation 5, α_0 is an analytic function of t in the whole range (0,1) for n finite. This is also shown in Figure 1, where equation 6 (black curve) is compared with equation 5 for some values of n.

2 Sign of the acceleration

The following argument may be used to determine the sign of the acceleration of mass m_0 . If we sum equation 1 over i and take into account that each tension is related to T_0 through $T_i = T_0/2^i$, we have

$$\sum_{i=0}^{\infty} m_i a_i = \sum_{i=0}^{\infty} \frac{T_0}{2^i} - \sum_{i=0}^{\infty} m_i g = 2T_0 - 2m_0 g ,$$

where the identity $\sum_{i>0} m_i = m_0$ has been used. Now, if we divide by $2m_0$, which is the mass of the whole system, we get the acceleration of the centre of mass:

$$a_{CM} = \frac{T_0}{m_0} - g \ .$$

This coincides with the acceleration a_0 of m_0 (see equation 1 for i=0). Since the external forces are the total weight (downward) and the tension of the uppermost string (upward), which is a reaction force, a_{CM} cannot be upward, and the same holds for a_0 . Therefore, we conclude $a_0 \leq 0$.