## Inelastic Relativistic Collision

A particle of mass $m$, moving at speed $v=4 c / 5$, collides inelastically with a similar particle at rest.
(a) What is the speed $v_{\mathrm{C}}$ of the composite particle?
(b) What is its mass $m_{\mathrm{C}}$ ?

## Solution by Michael Gottlieb:

(I choose units for which $c=1$.)
Call the moving particle ' $M$ ', and the particle at rest ' $R$ '. (The composite particle is defined to be ' C '.)

The momentum and energy of the particle at rest are

$$
p_{\mathrm{R}}=0 \quad E_{\mathrm{R}}=m .
$$

The momentum of the moving particle is

$$
p_{\mathrm{M}}=\frac{m v}{\sqrt{1-v^{2}}}=\frac{4 / 5}{\sqrt{1-\left(\frac{4}{5}\right)^{2}}} m=\frac{4}{3} m,
$$

and its energy is

$$
E_{\mathrm{M}}=\frac{p_{\mathrm{M}}}{v}=\frac{(4 / 3) m}{4 / 5}=\frac{5}{3} m
$$

For the composite particle, the conservation of energy implies that

$$
E_{\mathrm{C}}=E_{\mathrm{M}}+E_{\mathrm{R}}=\frac{8}{3} m,
$$

while the conservation of momentum implies that

$$
p_{\mathrm{C}}=p_{\mathrm{M}}=\frac{4}{3} m .
$$

The speed of the composite particle is

$$
v_{c}=\frac{p_{c}}{E_{c}}=\frac{(4 / 3) m}{(8 / 3) m}=\frac{1}{2} . \quad\left(\text { For } c \neq 1, v_{\mathrm{C}}=\frac{c}{2} .\right)
$$

The mass of the composite particle is given by the (positive) solution to

$$
m_{\mathrm{C}}^{2}=E_{\mathrm{C}}^{2}-p_{\mathrm{C}}^{2}=\left(\frac{8}{3} m\right)^{2}-\left(\frac{4}{3} m\right)^{2},
$$

$m_{\mathrm{C}}=\frac{4}{\sqrt{3}} m$.

