inelastic relativistic collision

A particle of mass m, moving at speed $v=4 c / 5$, collides inelastically with a similar particle at rest.
(a) What is the speed v_{C} of the composite particle?
(b) What is its mass m_{C} ?

Solution by Rudy Arthur:

Call the moving particle ' M ', and the particle at rest ' R ' (the composite particle is defined to be ' C ').

The momentum of the moving particle is

$$
\begin{equation*}
p_{\mathrm{M}}=\frac{m v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{4}{3} m c . \tag{1}
\end{equation*}
$$

And, the square of its energy is

$$
\begin{equation*}
E_{\mathrm{M}}^{2}=\left(m c^{2}\right)^{2}+\left(p_{\mathrm{M}} c\right)^{2} . \tag{2}
\end{equation*}
$$

The energy of the particle at rest is

$$
\begin{equation*}
E_{\mathrm{R}}=\left(m c^{2}\right) . \tag{3}
\end{equation*}
$$

The square of the energy of the composite particle is

$$
\begin{equation*}
E_{\mathrm{C}}^{2}=\left(m_{\mathrm{c}} c^{2}\right)^{2}+\left(p_{\mathrm{C}} c\right)^{2} . \tag{4}
\end{equation*}
$$

By conservation of energy: $E_{\mathrm{M}}+E_{\mathrm{R}}=E_{\mathrm{C}}$, or squaring and rearranging,

$$
\begin{equation*}
2 E_{\mathrm{M}} E_{\mathrm{R}}=E_{\mathrm{C}}^{2}-E_{\mathrm{M}}^{2}-E_{\mathrm{R}}^{2} \tag{5}
\end{equation*}
$$

Substituting (2) and (4) into (5):

$$
2 E_{\mathrm{M}} E_{\mathrm{R}}=\left(\left(m_{\mathrm{C}} c^{2}\right)^{2}+\left(p_{\mathrm{C}} c\right)^{2}\right)-\left(2\left(m c^{2}\right)^{2}+\left(p_{\mathrm{M}} c\right)^{2}\right)
$$

By conservation of momentum, $p_{\mathrm{C}}=p_{\mathrm{M}}$, so this reduces to

$$
2 E_{\mathrm{M}} E_{\mathrm{R}}=\left(m_{\mathrm{c}} c^{2}\right)^{2}-2\left(m c^{2}\right)^{2}
$$

Squaring again:

$$
\begin{equation*}
4 E_{\mathrm{M}}^{2} E_{\mathrm{R}}^{2}=\left(\left(m_{\mathrm{C}} c^{2}\right)^{2}-2\left(m c^{2}\right)^{2}\right)^{2} \tag{6}
\end{equation*}
$$

Substituting from (2) and (3) into (6) and expanding on the right,

$$
4\left(m c^{2}\right)^{2}\left(\left(p_{\mathrm{M}} c\right)^{2}+\left(m c^{2}\right)^{2}\right)=\left(\left(m_{\mathrm{c}} c^{2}\right)^{4}-4\left(m c^{2}\right)^{2}\left(m_{\mathrm{c}} c^{2}\right)^{2}+4\left(m c^{2}\right)^{4}\right)
$$

Rearranging,

$$
\left(m_{\mathrm{C}} c^{2}\right)^{4}-4\left(m c^{2}\right)^{2}\left(m_{\mathrm{C}} c^{2}\right)^{2}-4\left(m c^{2}\right)^{2}\left(p_{\mathrm{M}} c\right)^{2}=0
$$

Using (1) this reduces to

$$
\begin{equation*}
m_{\mathrm{C}}^{4}-4 m_{\mathrm{c}}^{2} m^{2}-\frac{64}{9} m^{4}=0 \tag{7}
\end{equation*}
$$

Solving for m_{C}^{2} (which must be positive) gives $m_{\mathrm{C}}^{2}=\frac{16}{3} m$, so the answer to (b) is

$$
\begin{equation*}
m_{\mathrm{C}}=\frac{4}{\sqrt{3}} m . \tag{8}
\end{equation*}
$$

The momentum of the composite particle is

$$
\begin{equation*}
p_{\mathrm{C}}=\frac{m_{\mathrm{C}} v_{\mathrm{C}}}{\sqrt{1-\frac{v_{\mathrm{c}}^{2}}{c^{2}}}} . \tag{9}
\end{equation*}
$$

By conservation of momentum $p_{\mathrm{m}}=p_{\mathrm{c}}$, and so, substituting from (1) and (8) into (9)

$$
\begin{equation*}
\frac{4}{3} m c=\frac{\frac{4}{\sqrt{3}} m v_{\mathrm{C}}}{\sqrt{1-\frac{v_{\mathrm{C}}^{2}}{c^{2}}}} \tag{10}
\end{equation*}
$$

Solving for v_{C} gives the answer to (a), $v_{\mathrm{C}}=\frac{c}{2}$.

