falling chain

(submitted by Ilkka Mäkinen)

A chain of length L cm and mass M kg is suspended vertically by one end with the other end immediately above a scale. The chain is released and falls. At the instant the entire chain has fallen onto the scale what does the scale read?

Solution by Sukumar Chandra:

As the chain is falling freely under gravity so at any instant t after the chain is released, when its free end goes down by x, the speed v of the chain is given as $v=\sqrt{2 g x}$.

In further small interval of time Δt, a small length of chain Δx of mass $(\Delta x \mathrm{M}) / \mathrm{L}$ strikes the scale with a speed v and comes to rest. This results in a loss of momentum of the chain of magnitude $(\Delta x \mathrm{M} v) / \mathrm{L}$. As this loss takes place in time Δt, so the rate of loss of momentum of the chain is $(\Delta x \mathrm{M} v) /(\mathrm{L} \Delta t)$. Thus the scale exerts an upward force of $(\Delta x \mathrm{M} v) /(\mathrm{L} \Delta t)$ or $\mathrm{M} v^{2} / \mathrm{L}$ (as $\left.\Delta x / \Delta t=v\right)$ on the chain which means the chain also exerts equal and opposite force on scale. Also at this instant the x length of the chain exerts its own weight too, $\mathrm{Mg} x / \mathrm{L}$ on the scale. Hence the total force the chain exerts on scale when it comes down a length x is $\left(\mathrm{M} v^{2} / \mathrm{L}+\mathrm{Mgx} / \mathrm{L}\right)$ or $3 \mathrm{Mgx} / \mathrm{L}$ as $v=\sqrt{2 g x}$. In other words when the chain falls by a length x, the scale reads $3 \mathrm{M} x / \mathrm{L}$.

So when the chain has fallen a length L , the scale reads 3 M .

