Ball Up/Down

If you throw a small ball vertically $u p$ ward in real air with drag, does it take longer to go $u p$ or come down?

Solution by Sukumar Chandra

While the ball is going upward the forces of gravity and air drag are both downward, hence it decelerates with an average magnitude $a_{u p}>g$ (the acceleration due to gravity).

If the ball is thrown with speed v and it takes time $t_{u p}$ to reach the highest point h where its velocity is zero, then using the equation of kinematics we can write

$$
v^{2}-2 a_{u p} h=0,
$$

and

$$
v-a_{u p} t_{u p}=0 .
$$

Eliminating v we get

$$
t_{u p}=\sqrt{\frac{2 h}{a_{u p}}}
$$

While coming down, the force of air drag is $u p$ ward and the force of gravity is downward, so the ball's downward acceleration has average magnitude less than g, say $a_{\text {down }}<g$.

If the ball takes $t_{\text {down }}$ seconds to come down to Earth starting from rest and covering the height h,

$$
h=\frac{1}{2} a_{\text {down }} t_{\text {down }}^{2},
$$

or

$$
t_{\text {down }}=\sqrt{\frac{2 h}{a_{\text {down }}}}
$$

Hence we have

$$
\frac{t_{u p}}{t_{d o w n}}=\sqrt{\frac{a_{d o w n}}{a_{u p}}} .
$$

As $a_{u p}>a_{\text {down }}$, so $t_{\text {down }}>t_{u p}$, thus it takes longer coming down.

