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F. first observes that if you are dining for only one night, your selection is (uniform) 

random, so the mean score acquirable is 50 (out of 100).  

 

He goes on to consider the mean score acquirable for exactly two nights of dining, when 

employing the following strategy: If the rating of the restaurant on the first night is better than 

average (50/100), go back to it again on the second night; otherwise try a new restaurant on the 

second night.   

For convenience of calculation F. changes the range of the restaurant ratings to the unit 

interval [0,1].Calling the rating of the first night’s restaurant x, that of the second night’s (if new) 

y, and setting s = ½ (formerly 50/100),  he observes that when x>s, the total score will be 2x, 

while otherwise it’s x+ y.  [Thus when we have already dined at one (or more) restaurants and 

there is exactly one dinner left, ‘s’ serves as a threshold value that determines whether we repeat 

the [best] restaurant we already tried, or try a new one.]  To find the mean score F. sums the 

integral of 2x with respect to x from s to 1, with the integral of x+ y with respect to x from 0 to s 

and with respect to y from 0 to 1, 
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Next, F. considers a strategy for two nights of dining when we have already tried one or 

more of the restaurants, of which the best had rating P (referred to hereafter as “the favorite”). 

Again he calls the rating of the first night’s restaurant (if new) x, that of the second night’s (if 

new) y, and he defines a constant 0P , to be determined, such that if 0P P> , we forego the 

possibility of trying any new restaurants and dine at the favorite on both nights. [Thus 0P  serves 

as a threshold value when two nights of dining remain, analogous to s = ½ when one night 

remains.] This implies that 0P  should be chosen so that when 0P P= , the score for returning to 

the favorite both nights (2P ) is the same as the expected score when not doing so (which needs 

to be determined as a function of P). Noting that 0P  must be greater than ½ (the average rating of 

a randomly selected restaurant), F. goes on to describe his strategy as follows: 
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 If 0P P≤ , we try a new restaurant (rated x) on the first night, and then on the second night 

there are three possibilities: try a new restaurant, return to the favorite or return to the first 

night’s restaurant, and the choice is determined by the relative values of  P, x  and ½, as follows: 

 

x < P  and P < ½, or 

x > P  and  x <½, 

 

In these two cases the favorite and first night’s restaurants are both below 

average, so we try a new restaurant (rated y) on the second night, scoring x + y. 

 

x < P  and P > ½, 

 

The favorite is both better than average and better than the first night’s restaurant, 

so we return to the favorite on the second night, scoring x + P. 

 

x > P and x >½. 

 

The first night’s restaurant is both better than average and better than the favorite,  

so we return to the first night’s restaurant on the second night, scoring 2x. 

 

Finally, if 0P P>  then we return to the favorite for both nights, scoring 2P. 

 

To simplify the calculation of the mean score acquirable with the above-described 

scheme, F. considers the following three cases:  

 

(1) 0P P<  

 

As noted above, the score in this case is 2P. 

 

(2) 0½ P P< <  

 

In this case we score 2x if x > P, otherwise we score x + P.  So the mean score is  the 

integral of 2x with respect to x from P to 1, plus the integral of x+ P with respect to x from 0 to 

P, which equals 21 2P+ . 
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(3) ½P <  

 

In this case we score 2x if x > ½, otherwise we score x + y.  So the mean score is  the 

integral of 2x with respect to x from ½ to 1, plus the integral of x+ y with respect to x from 0 to 

½ and with respect to y from 0 to 1, which equals 9/8.  This is precisely the same calculation 

made above for the two-night only case. 
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[From these considerations it can be seen directly that when the favorite’s rating is less than the 

threshold value of the two-night-only case, s = ½, the favorite will never be chosen and thus has 

no effect at all on the expected score, which is the same as that of the two-night-only case, 

having no ‘favorite’ to choose from initially.] 

  

F. goes no to determine 0P  setting the score in case (1), where we dine at the favorite both 

nights, equal to the expected score in case (2), where there is yet some possibility of returning to 

the favorite [while ignoring case (3), for which there is no possibility of returning to the 

favorite], and solving for P. This yields the quadratic equation, 
2

0 01 2 2 0P P+ − = , which F. solves 

using conventional methods, finding 0 2 2 0.586P = − ≈ . He checks himself by 

calculating
2

0 6 4 2P = − , and 02 4 2 2 1.172P = − ≈ , and plugging them into 
2

0 02 1 2P P= + . 

 

Finally, F. summarizes his strategy as follows: 

 

If  .500 P <         x;    if ½x <  y, else x. 

If .586 .500P> >   x;    if  x>P  x, else P. 

If .586P >        P;                             P. 
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F. now generalizes his strategy for two nights of dining, to n nights, when one has already 

tried one or more of the restaurants, of which the best had rating P (“the favorite”). He 

introduces the notation nP  for the threshold value to which one compares P when n nights of 

dining remain.  
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Having already found 1 ½P = , and 2P  (formerly “ 0P ”) 2 - 2= , he shows how to find 

any nP  by direct analogy with his previous computations. He defines his general strategy (with 

scores shown on the right) to be: 

 

(A) nP P>              repeat P for the n remaining nights.    nP 

(B) 1n nP P P− < <        try x;  if x > P repeat x;      nx 

         else repeat P.      x + (n-1)P  

 

The score given by rule (A) is self-explanatory.  For the first part of (B) when x P> ,  x 

becomes (the rating of) the new favorite, and when in addition 1nP P− <  then necessarily 1nx P −> , 

thus on the following night (A) dictates that we will repeat x for the remaining n – 1 nights, for a 

total score (including the previous night) of nx. Similarly for second part of (B) when P x≥ : in 

this case P remains (the rating of) the favorite, and when in addition we have 1nP P− < , then on 

the following night (A) dictates that we will repeat P for the remaining n – 1 nights, for a total 

score (including the previous night) of x + (n-1)P.  

 

[F. no longer bothers to consider the score when 1nP P −< , because it isn’t needed to calculate nP . 

To see this we can extend F.’s strategy  as follows: 

 

 (C) 1nP P −≤                try x;  if 1nx P −>  repeat x;  nx 

                        else try  y.    x + y + … 

 

The expectation of the first part of (C) equals ½ + the expected score for n – 1 nights of dining 

when x is the favorite and x > Pn-1, while the expectation of  the second part equals ½ + the 

expected score when dining for exactly n – 1 nights. Clearly nP  can not depend on these (as 

reflected by the fact that P does not appear in the scores of this case). ]  

 

To calculate nP   F.  solves for P when the expected score for case (A), nP, is set equal to 

the expected score for case (B).  To find the expected score for case (B) he sums [integral of nx 

with respect to x for x = P to 1] with [integral of x + (n-1)P with respect to x from 0 to P] , 

yielding ( ) 22 ( 1) 2n n P+ − . 
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Using conventional means F. then solves the quadratic 

 

21

2 2
n n

n n
P nP

−
+ =   

 

finding that ( )1nP n n= + . As an example, F. calculates 10 0.76P ≈ .  

 

Next, considering the case n = 16 ( 16 0.80P = ), F. expresses his solution in a  completely 

different way, inverting it to calculate n from nP !  

He observes that if nP = 0.80, then there is probability 0.80 that a randomly selected 

restaurant will have a lower rating. How much lower? On average, it will be 0.40 lower. So the 

expected loss is 0.80 x 0.40 = 0.32. On the other hand, there is probability 0.20 that a randomly 

selected restaurant will have a higher rating, and on average it will be 0.10 higher, and when that 

happens ( nP P> ) we sample it n times, so the expected gain is 0.2 x 0.1n = 0.02n. To solve for n, 

one sets the expected gain to the expected loss 0.02n  =  0.32, thus n = 16. 

  

F. then generalizes his inverted solution, as follows: 

 

Below chance P     average loss 2P   expectation 2 2P  

            Above chance 1 – P     average gain ( )1 2P−  expectation 
( )21
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By equating the expected loss to the expected gain for the “break even” case nP P= ,  F. finds   
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which is just an inversion of the solution for ( )1nP n n= + . 

 

[This  almost looks like magic, but I suspect F. found this way of looking at the problem by 

examination of his integrals for cases (A) and (B) above, which equated yield nP P= . Indeed, F. 

was very good at doing algebra in his head, and probably noticed that  
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can be rearranged as  
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which could have been suggestive, to Feynman’s way of thinking.] 


