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boat time 

Suppose you are anchored near the shore of a channel in which  there is steady current, and 

you are going to run your (motor)boat at constant throttle to a dock directly across the 

channel on the opposite shore. There are two ways one might steer the boat to the dock:  

•   the crabbing method: steer a steady course with the nose of the boat 

pointed somewhat upstream, so the boat maintains a fixed orientation 

and crabs in a straight line across the channel  

• the pointing method:  keep the nose of the boat pointed directly at the 

dock  

 

 

 

 

 

 

 

 

 

 

 

 

 

Which method  gets the boat to the dock faster, and by how much? (Assume the boat 

runs at a constant speed relative to the water, which is faster than the speed of the 

current relative to the shore.) 

 

 

Michael A. Gottlieb’s Solution 

 

Notation:  

 

L is the width of the channel. 

 

vsw  is the velocity of the shore relative to the water. 

vws  is the velocity of the water relative to the shore. 

 

So, vws=  – vsw.  

 

Let |vws| =  sw = – |vsw| with sw > 0. 

 

(xw, yw) is the boat’s coordinates in the frame of the water. 

(xs, ys)  is the boat’s coordinates in the frame of the shore. 
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The origin of the shore’s frame is the boat’s destination; the origin of both frames coincide at 

time t = 0. The positive y-axis points in the direction of the current, and the positive x axis 

points in the direction of the boat’s starting place. 

 

The transformation between frames is: 

 

yw = ys – sw t 

xw = xs 

 

vbw = (
wdx

dt
, w
dy

dt
)  is the velocity of the boat relative to the water.  

vbs = (
s

dx

dt
, s
dy

dt
) is the velocity of the boat relative to the shore.  

 

It is given that the magnitude of vbw is constant, so  

 

    Let |vbw| = sb with sb > 0. 
 

 

The Crabbing Method 

 

 

For the crabbing method we have the following situation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So, 
2 2 2 2

bs bw ws b ws s= − = −v v v , and therefore the time it takes the boat to cross the 

channel using the crabbing method is 
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The Pointing Method 

  

Consider the situation viewed from the frame of the water at time t: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have tan θ = (yw + swt) / xw , and taking components we find the boat’s speed parallel and 

perpendicular to the shore (relative to the water): –sb sin θ and –sb cos θ, respectively. 
 

 

 

Now consider the situation viewed from the frame of the shore at time t: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

First note that θ, which depends only on the boat’s position relative to the destination, is 

the same in both illustrations. In terms of the frame of the shore, tan θ = ys / xs. Then 

observe that the speed of the boat in the y direction has to be  sw  more in the frame of the shore 

than it is in the frame of the water, while the speed of the boat in the x direction is the same in 

both frames.   

 

So we have, 
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And now we are ready to solve for the path of the boat.  From here forward I put everything in the 

frame of the shore, and I drop the subscripts: 

 

(2) 

 

[Before I procede, here’s a simple sanity check. We have… 

 

 

 

 

 

 

 

… which is right, by the Pythagorean theorem, because ( , )wx y s′ ′ −  are the boat’s (x, y) velocity 

components relative to the water, and sb is the boat’s speed relative to the water.] 
 

Since 
dy y

dx x

′
=

′
, we have, from (2): 

 

 

 

 

 

 

 

But, since 
2 2

cosθ =
x

x y+
, the curve the boat follows satisfies: 

 

 

 

 

with boundary conditions y[L] = 0 and y[0]=0. Rearranged this is: 

 

 

 

 

 

 

I used Mathematica to solve this differential equation: 
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Only the first of the two solutions is positive real. Simplifying yields 
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Here’s a graph of the boat’s path for L=20, sb=20, sw=2 – a weak current (Note: different 

scales for x and y): 
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And here’s the boat’s path for L=20, sb=20, sw=18 – a strong current (at yet another scale 

for  y): 

 

  

 

It has been shown that (in the frame of the shore): 
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It has also been shown that   
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and therefore: 

 

 

 

 

 

 

 

 

Integrating with respect to x and settig t(L)=0 yields 
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and thus t(0), the time it takes the boat to cross the channel using the pointing method is 

 
 

   . 

 

 
 

Comparison of crossing times 
 

 

crabbing method: 

 

 

 

 

 

pointing method: 
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, the crabbing method is faster.  
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