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Here's my guess:  a simple pendulum with period 1.00s has a length of 

about 0.249m. The pendulum in question is being made to behave like a 

pendulum with a period of 1.10s which has a length of about 0.301m; 

and who's amplitude at a point 0.052m down from the pivot is 1.00cm. 

The amplitude at the bottom should be approximately (0.301m / 0.052m) 

* 1.00cm, or 5.8cm. 

 

This person seems to have the right idea, in terms of the geometry of the problem. 

However, all statements in a solution must be justified, and the first two statements, 

giving the lengths of simple pendulums with periods 1.00s and 1.10s, aren’t justified in 

any way, which disqualifies this solution. Furthermore, these statements  appear to be 

applications of the exact formula L = (g/4π
2
)T

2 
which is the solution of a differential 

equation, the use of which is forbidden without other justification not involving calculus, 

etc. 
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That is a nice problem. Hope you don't mind me taking a shot. 

 

First, I'm assuming a linear oscillator. The envelope of bob's oscillation must have a 

period of 11 seconds, since that's the time it takes for the relative phase between two 

oscillation to go around. The envelope is sinusoidal, and must pass through the node at 

the same slope as the envelope of a resonance, since it's effectively at resonance at these 

points. (The phase of the support's displacement leads or lags bob's displacement by 

exactly 90° there.) 

 

So the only question is at what rate would amplitude of bob's oscillation grow if both 

periods were at 1s exactly. The kinetic energy of the bob as it passes through the node is 

(1/2)mv². The force due to bob displacement is F=kx for some k and x=1cm. We don't 

know what the k or m is, but k/m=ω², and that's available. Rate of change of pendulum's 

energy is therefore F*v. With total energy related to current amplitude by E=(1/2)ka², 

where a is amplitude. v=a/ω. Energy increases at the rate of kxa/ω. So a² is increasing at 

rate of 2xa/ω. Since a(t)=ct (resonance), a²=c²t² which is area under a triangle y=2c²t, and 

therefore increases at a rate of 2c²t = 2ac. So the rate of increase of a=x/ω=x/2π. 

 

So the solution is the amplitude of the sinusoidal wave with period of 11 seconds and 

passes through zero at slope of x/2π. Sin with period 2π will pass through zero at slope 1. 

So A=(x/2π)*(11/2π) =11*x = 11cm. 

 

(Later clarified: A = a/(1-P/p)  = 1 cm / (1 – 1/1.1) = 11 cm) 

 

Wrong answer. Wrong solution too. (Note: steady-state was not assumed.) 
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(Commenting on the above)  

 

That is not the correct answer. The correct answer should read (for small oscillations of 

the pendulum, small meaning the amplitude of oscillaiton measured by the maxium angle 

of deflection from the vertical is much smaller than 1 rad): 

 

A = a/[(Tpivot/Tpend)
2 

- 1] = 1 cm / [(1.1/1)^2-1] = 4.8 cm 

 

This is not a solution, and the given answer is wrong. (The answer is correct  in the non-

inertial reference frame of the moving pivot.) 

 

 

8/29  13:37 

 

Now, I am going to show you jokers how we solve this problem with differential 

equations at Caltech. After that, everyone will know the right answer (which is not 11 cm 

and not 4.8 cm), and how to find it in a conventional way. The challenge to find it in an 

unconventional way remains. However, [name deleted] and [name deleted]  are 

disqualified from the competition (for having submitted wrong answers). Please excuse 

me for typing this out in ASCII - I don't have time to make it pretty. 

 

The equation of motion for a forced harmonic oscillator with one degree of freedom is 

 

mx'' + kx = F(t), 

 

or  

 

(1) x'' + (k/m)x = F(t)/m, 

 

where F(t) is the driving force. (Note: in this problem x is the horizontal position of the 

bob.) The frequency of _unforced_ oscillations, whose period is given to be T0 = 1 sec, is  

 

w0 = Sqrt(k/m) = 2Pi/T0 = 2Pi sec^-1, 

 

while the frequency of _forced_ oscillations, whose period is given to be T = 1.1 sec is 

 

w = 2Pi/T = 2Pi/1.1 sec^-1. 

 

Let X be the position of the pivot, such that 

 

X = X0 cos(wt), with X0 = 1 cm. 

 

Then we must have (by Newton's law), 

 

mx'' + k(x-X) = 0,  



 

and thus, 

 

(2) x'' + (k/m)x = (k/m)X0 cos(wt) = w0^2 X0 cos(wt) . 

 

Comparing (2) to (1), we find that the driving force is  

 

F(t) = F0 cos (wt), with F0 = kX0,  

 

thus (1) becomes, 

 

(3) x'' + (w0^2)x = (w0^2)X0 cos(wt). 

 

When steady-state motion is attained we have  

 

(4) x = A cos(wt), 

 

where A is the amplitude we are seeking. Substituting (4) into (3), dividing both sides by 

the common factor cos(wt), we get 

 

-Aw^2 + Aw0^2 = X0(w0^2), 

 

and thus, 

 

A = X0 (w0^2)/(w0^2 - w^2)  

 

= X0 1/(1-(w/w0)^2) 

 

= 1 cm * 1/(1-(1/1.1)^2) 

 

~= 5.76 cm. 

 

This is not a contest entry, but my own post on the Physics Forum, which I include for the 

sake of completeness – noting that after this posting the answer to the problem became 

public knowledge.  
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 I shall name the natural period P0 = 1.00 second, amplitude A = 1.00 cm and period P = 

1.10 seconds 

 

    Since the natural amplitude is 1.00 seconds,  I tried to equate the A = 1.00 cm and P = 

1.10 seconds to a numerical answer of 1 cm. 

 

   Since (2pi/1.1 seconds) is equal to 5.71 Hz, The pendulum needs to travel an equal 

distance in amplitude measure to create a steady motion multiplied by time. (d = 



v*t).  (5.71 cm / 5.71 Hz) = (1 cm*sec/P0) = 1cm 

 

   So this concludes an amplitude of 5.71 cm +/- 0.03 cm  will result in a steady motion. 

 

As Pauli might say, this solution is “not even wrong!” 

 

 

9/20 13:40 

 

The answer for this exercise challange is 1.21 cm 

 

Not a solution, and wrong answer. 

 

 

10/18 8:44 

 

Ok, here goes.  To be honest, this feels hopelessly naive, but I might as well get the 

discussion going... 

 

In the steady state, the bob's swing must clearly take 1.1s. 

 

As a rough approximation, one can imagine this swing looking like the natural swing, but 

with a flattish portion in the centre, with a duration of 0.1s.  (In reality the swing would 

resemble a distorted figure of 8, but for the purposes of this exercise I think the 

approximation is ok.) 

 

Aside:  To get an idea of the effect of the forcing motion, let's consider the two extremes: 

 

1. Very slow oscillation:  In this case, the motion of the bob would almost exactly match 

the motion of the pivot point.  The 'flat' portion of the swing would take the entire 

duration of the swing, and the amplitude of the bob would be 1cm. 

 

2. Oscillation = 1s:  In this case, the motion of the pendulum is continually reinforced by 

the pivot point motion, and the amplitude of oscillation increases to the maximum (or 

rather, until the pendulum stops being a pendulum and hits someone in the face).  The 

'flat' portion of the swing becomes neglible. 

 

So this looks like we have some sort of reciprocal relationship going on, perhaps: 

        amplitude = 1cm + ( 1 / n (period - 1))^m 

 

Anyway, according to our dodgy approximation above, the flat portion must take 0.1s, 

and the whole swing takes 1.1s, that leaves us with 1s for the 'natural', roughly sinusoidal 

part of the swing. 

 

The motion of the pivot adds 1cm to the natural swing, and this distance must be covered 

in the extra 0.1s we have available.  Assuming that this is largely done at the bottom of 

the swing, then we can say that the maximum velocity is 10cm/s.* 



 

For the pendulum to reach this speed in 0.5s, it has been accelerating at ~20cm/s^2, and 

the distance it has covered  must be 20 x 0.5 x 0.5 / 2 = 20 / 8.  (Do I need to derive s = 

1/2at^2?)  

 

This is half the amplitude of the normal swing, so the total amplitude, including our 1cm 

extra, is: 

 

           1 + (2 x 20 / 8 ) = 6cm 

 

Which implies that the relationship could be:  

 

        amplitude = 1cm + ( 1 / 2 x (period - 1)) 

 

Couple of dodgy approximations in here, so I'm sure someone can do better! 

 

(Disclaimer:  I've never seen this problem before, and to my shame I haven't even read 

the lectures yet...) 

 

*This is the part I am most unsure of - it only really works if the bob swing is very large 

compared to the motion of the pivot.  In reality, this sets the upper limit to the bob speed, 

and therefore the actual swing will be smaller. 

 

Another solution in the “not even wrong” category. 

 

 

10/23 16:41 

 

 Feynman’s lectures abound in beautiful examples about how to approach 

complicated physical situations. Before writing equations, a good idea is to start looking 

for related systems with well known behavior, and estimate to what degree their behavior 

matches the answer to our problem. In most cases, the answer is not exact, but at least 

will give a hint about the way forward for solving the initial problem.  

 

Applied to our case, such a procedure leads to an almost geometrical and “visual” 

solution. Instead of directly solving the proposed problem, we look at the situation shown 

in Fig.1(a), where the pendulum with a fixed pivot point P
/
 and length L  experiences 

small oscillations of amplitude bAL ≅θ  and period gLT /2π=  (g stands for the 

acceleration of gravity). 
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FIG. 1: (a) A simple pendulum with a fixed pivot point P
/
 and its length llL ′+=  adjusted to provide a 

natural period 0TT >  ( glT /20 π= ). (b) The fixed pivot point P
/
 satisfies lll ′′+′=  and 0TT < .   

 

Up to the multiplicative constant π2 , the latter equation can be easily derived 

using dimensional analysis, a fact which is largely known. The constant itself plays no 

significant role in the solution below. The intersection P of the pendulum rod with the 

horizontal x-axis will obviously oscillate in phase and at the same frequency with some 

amplitude PA which we can estimate in an elementary way. Now, assume that, for some 

reason, the region above x-axis is invisible to us. All we can see is a steady motion where 

our simple pendulum of length l  (now with small variations in time) has the pivot point P 

moved laterally in a practically sinusoidal motion with amplitude bA and the angular 

frequency T/2πω = given by              

[ ])/(1/)/( 2

0

2 llllg ′+=′+= ωω ,     (1) 

where gl /0 =ω >ω . Despite this is a slightly different situation since the length l  shows 

small variations, and the pivot point do not move exactly along x-axis, as long as the 

friction is negligible and the amplitude of oscillations remains small, we can safely 

disregard such details and use the model as a good approximation of our initial system. 

Now, all we have to do is to use the theorem about similar triangles to obtain the ratio of 

the two amplitudes in Fig. 1(a)  

)/(1/)(/ lllllAA Pb
′+=′′+= .     (2) 

Inserting the ratio ll ′/ from (1) we can directly solve for the amplitude of the pendulum 

blob  

[ ] [ ]2

0

2

0 )/(1/)/(1/ TTAAA PPb −=−= ωω .    (3) 

Using the provided numerical data we get 8.5≅bA cm. The blob amplitude computed 

with respect to P is therefore given by the difference [ ] 8.41)/(/ 2

0 ≅−=− TTAAA PPb  cm. 

Using similar approximations we can also tackle the case 0TT <  (FIG.1,b), 

[ ])/(1// 2

0

2 lllg ′−=′′= ωω , and 1)/(/ −′= llAA pb (using similar triangles in FIG. 1,b). A 

straightforward calculation yields to 



[ ] [ ]1)/(/1)/(/ 2

0

2

0 −=−= TTAAA ppb ωω .    (4) 

This time, the blob amplitude computed with respect to P is given by the 

sum [ ]2

0 )/(1/ TTAAA PPb −=+ . As we can see, eqs. (3) and (4) provide us with a general 

solution valid for small oscillations and very low friction 

[ ]1)/(/ 2

0 −±= TTAPpivot mobile the torespect  with Amplitude ,  (5) 

with the plus sign used when 0TT >  (below resonance), and the minus sign when 0TT <  

(above resonance). When using 91.0=T s, we obtain 8.4≅bA cm, and the blob amplitude 

computed with respect to P is given by [ ] 8.5)/(1/ 2

0 ≅−=+ TTAAA PPb cm. This is quite 

enlightening because without any fancy calculation we were able to estimate the 

magnitudes and to show how the blob amplitudes behave with those oscillations of P 

around resonance. Moreover, under natural assumptions (steady motion, very low friction, 

and small amplitudes) the model above shows that below resonance ( ωωω ∆−= 0 ) the 

blob oscillates in phase with the oscillating pivot P (FIG. 1,a), while above the resonance 

( ωωω ∆+= 0 ) the pendulum blob oscillates in phase opposition with the oscillating 

pivot P (FIG. 1,b). Therefore, when traversing a resonance the pendulum blob 

experiences a change of π in its phase. Of course, we can confirm all these conclusions 

by conducting a full mathematical description of this system. 

 As a final step, we need to check that our estimated amplitudes satisfy the small 

angle approximation. The numerical values ( 10 =T s, 8.9≅g ms
-2

) give for the length of 

our pendulum a value of 25≅l cm. Therefore, the estimated angular amplitude is close to 

2.0max ≅θ rad, or o11max ≅θ , which lies in the range of the desired approximation. 

 

This is a very well-written solution, however the authors states that “ gLT /2π= ,”  

without justifying it, and that is the soluton to a differential equation,. Granted he 

mentions the fact that /T L g∝  can be derived by dimensional analysis (without 

actually doing so), but then, curiously, he writes “The constant [ 2π ] itself plays no 

significant role in the solution below,” when, in fact, it plays no role whatsoever . Eq. (1) 

is the solution to a differential equation, which disqualifies this solution. I will remark, 

however that it was unnecessary for the author to write Eq. (1), since his solution does 

not require the exact (given) relationship between ω, g and L (nor between ω0, g and l), 

but only the ratio /l l′ , and ( ) ( ) ( )( )2

0/ 1 1 1 1l l l L l L l T T′ = − = − = − , using the result 

of the dimensional analysis. 

 

 

10/24 18:06 

 

First of all let's imagine that you do not move the pendulum by hand but it is suspended 

from the top of a car wich moves in a sinusoidal way. So if the car has an aceleration a 

then the bob will fill a force wich is F=-m*a where m is it's mass. We have to include that 

force because the system is not inertial. Now we can just write Newton's law. Since it is 

acelerating in the x direction then this is also the direction of the force F. The gravity 

force mg is in the y direction always. The other force that apears is the tention T. By 



analyzing the forces into a component paralel and a perpendicular to the force we find 

that T=m*g*cosθ+F*sinθ. The total force in the x direction is T*sinθ-F. (θ is the angle of 

the pendulum with respect to the y axis) So now the total force in the x direction is given 

by ΣF =- F +m*g*cosθ * sinθ + F*sinθ*sinθ. 

 

Here we point out that we want to study only small oscilations, when θ is really small. So 

we make the aproximation sinθ=θ and cosθ=1. You can now see why we study only the 

motion of the x axis. If L is the length of the pendulum's "rope" then x=L*sinθ=L*θ and 

y=L*cosθ=L . So we only need to study the projection of the motion of the x axis. You 

can imagine that as studying the shadow of the bob on the floor created by some light 

coming just over the bob in the y axis.  

 

The net force in the x direction in first order of θ is  ΣF = -F + m*g*θ. But θ=x/L , so 

ΣF=+m*a+m*x*g/L. However g/L is the square of the pendulums natural frequency w. 

Since our car is moving in a sinusoidal motion, let it be B*cos(ωt), we know from Hook's 

law that the aceleration will  be a=-ω^2 *B*cos(ωt). What will the form of x be? Well 

there is something special about sines and cosines. They are only "compatible" with their 

selfs. A sine or a cosine of some frequency never contains other frequences and a motion 

like that can only be steady if it is the compatible one. (Remember for example that the 

only way for the oscilation of a music cord to be steady is to be a characteristic of the 

cord.) The only way we can achieve a steady motion is for x to be proportional to cos(ωt), 

so x=A*cos(ωt). What the problem is asking is A. 

 

Now the total force can be writen as 

ΣF=m*(-ω^2 *B+m*A*w^2)*cos(ωt) 

This is the equation of motion for the x direction...or the shadow if you like it better. 

 

Well there is however a nice coincidence. If you just saw the shadow of this object you 

could not decerne it from another object doing a really familiar motion. I am talking 

about a circular motion with constant speed u=ω*R ! The net force was calculated 

geometrically by Newton and it is  

m*ω^2*R, where R is the radius of motion. The force in the x direction however is 

m*ω^2*R*cos(ωt), exactly as the one in our problem. 

 

Of course every force creates only one kind of motion. You just have to specify the 

distance and the velocity and the solution is unique. We already specified the velocity at 

t=0 when we chose the cosine as the sinusoidal movement. We now need to specify the 

other one. Well...we want the maximum displacement to be A. That means allow the 

particle in the second problem to reach up to A, which means that the radius R will be 

R=A. 

 

A solution to our problem will be that the forces in our two problems are equal. 

m*(-ω^2 *B+m*A*w^2)*cos(ωt) = m*ω^2*A*cos(ωt) 

which leads to 

A=B*ω^2/(w^2-ω^2) 

plugging in  

B=1.00 cm 



ω=1.10 s 

w=1.00 s 

we get  

 

A= 5.76 cm 

 

This solution, besides being very convoluted and hard to read, makes  contradictory 

statements about “ ΣF.” It furthermore states that “g/L is the square of the pendulums 

natural frequency w,” which is the exact solution of a differential equation. So, it is 

disqualified 

  

 

11/1 13:31 

 

We know that a certain force is applied on the bob when the pivot point is moved. If we 

switch reference frames and move with the pivot we can pretty much see that the force 

applied is (roughly, I suppose, assuming the bob does not begin to move before we get to 

the first maximum amplitude) the same as the one required to move the bob to an 

amplitude of 1cm (neglecting the mass of the pivot since it’s not so important). With this 

in mind we know the maximum force from the mass of the bob and the force equation of 

simple harmonic motion: 

 

  

 

We also know that we can define natural angular velocities for the bob and pivot from 

their periods; we’re going to need them soon: 

 

 
 

At steady state when the bob is at its maximum amplitude, we can change reference 

frames again (do it twice now) to determine the force on the bob due to the pivot and vice 

versa. There will be a difference as effectively we are assuming different pendulum 

lengths (the different angular velocities) in each frame. The difference in the forces we 

call the net force on the bob: 

 

  

 

Equating  as they should be at least roughly the same at the maximum 

amplitude and cancelling the mass of the bob from the equations: 

 

 
 

Now I guess this is relative to the pivot since that’s how we did the net force so we’ll add 

one centimetre to make it absolute: 



 

  

 

Disqualified because the first given equation is not justified but merely stated. 
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Resonant ratio of amplitudes goes like 1/(1-(f/f0)squared.  If f is 0 ratio of amplitudes is 

1; at low frequencies the pendulum follows the pivot.  As f gets much greater than f0 the 

ratio goes to 0; at high frequencies the mass of the pendulum cannot accelerate to keep up 

with the pivot.  If f equals f0 the ratio is undefined; with no damping the energy added to 

the system by moving the pivot keeps adding to the resonant mode of the 

pendulum.  using this if the forcing period is 1.1 and the resonant period is 1.0 we get 

5.76 cm. 

 

Disqualified because the first given equation is not justified but merely stated. 

 

 

11/14 4:18 

 

 
 

 

 

 

 



 

 
 

Disqualified for using differential equations. 

 



 

11/14 14:08 

 

The energy transfer between the moving pivot and the pendulum stops, when the point 

corresponding to "would-be" pivot for T_forced=1.1second period of free oscillations 

finally stops moving. In other words, hang a 1.1-second-periodic free pendulum and 

"swing it" so that the point on its thread that corresponds to 1-second-period-pivot moves 

with amplitude 1cm. Done.  

 

Let T_forced, T_free stand for 1.1-second pivot and 1-second pendulum periods, 

respectively. This point is (T_forced/T_free)^2=1.21 father from the weight of the 

pendulum than the actual pivot. Thus the amplitude   

 

A_forced= A_pivot*(T_forced/T_free)^2/((T_forced/T_free)^2-1)=A_pivot/(1-

(T_free/T_forced)^2)=5.76cm. 

 

Sanety check: A_forced is much smaller than (g*(T_forced/(2pi))^2))=30cm - the 

pendulum "would-be" length as counted from the "would-be" pivot. Thus oscillations are 

small enough to be "independent enough" of the amplitude. 

 

Finally, some hardly necessary hairsplitting. If we take into account pendulum 

nonlinearity, the answer would slightly increase, because  the "free" period increases with 

amplitude, so that "the would-be pivot" does not need to move up as much. We can easily 

find the next iteration to A_forced as follows. The max angle of deviation is  

 

Theta0=arcsin(A_forced/(g*(T_forced/(2pi))^2))=arcsin(5.76cm/30cm)=0.193. 

 

The change in period is Theta0^2/16=0.0023. The answer would increase to A_pivot/(1-

(T_free/T_forced)^2*(1+Theta0^2/8))=5.89cm - essentially the same. 

 

Disqualified because the first given relation, between T_forced and T_free and the point 

corresponding to the“would-be” pivot,  is not justified but merely stated. 
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I will refer to the 0.01m sinusoidal movement of the pivot point a driving force 

for the pendulum. There are two possibilities for the steady state behaviour for such a 

pendulum.  

 

1. If the driving force has a longer period than the inherent period of the pendulum, 

the pendulum will move slower than usual, and in phase with the driving force, in 

such a way that the efective pendulum arm length is longer, and a stationary point 

of this imaginary longer pendulum arm will exist above the moving pivot point. 

Intuitively, this happens because the driving force is acting as a break on the 

natural pendulum movement, in order to slow it down.  

 



2. If the driving force has a shorter period, the pendulum will move faster than usual, 

and out of phase with the driving force, creating an efectively shorter pendulum 

and a stationary point on the pendulum arm below the point where we apply the 

force. This happens because the driving force is dragging the inherent pendulum 

movement along to speed it up.  

 

These approximations are valid as long as the driving force is only moving the pivot 

point a small distance compared to the original pendulum arm length, which in this case 

is easily calculated to be  
2

0.25m
2

T
L g

π
 = ≈ 
 

, 

where we have inserted T =1s. We consider 0.01m « 0.25m to our required level of 

accuracy.  

In this case, the driving force is slower than the pendulum, so the steady state is in 

phase, and the pendulum period must be the same as the driving force period, that is T 

=1.1s. From the above formula, we insert T =1.1s to get the efective pendulum arm 

length, which turns out to be  

0.30mL ≈ . 

 

We know that the point at distance 0.05mL L− ≈  downward from the stationary 

point along the imagined efective pendulum arm is moving 0.01m side to side. By scaling 

this side to side amplitude up to the full size of the efective pendulum, the pendulum is 

moving approximately an amplitude  

0.20m
0.01m  0.06m

0.05m
A ≈ × =  

side to side. 

 

Disqualified because the first calculation 

2

0.25m
2

T
L g

π
 = ≈ 
 

 (and the next 

0.30mL ≈ ), is the solution to a differential equation (not otherwise justified). 
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A pendulum with a period of 1.1 sec would have a length of .3m, while a pendulum with 

a period of 1 sec has a length of .248m.  Imagine then that the pivot point of the real 

pendulum is a fixed point on an imaginary larger pendulum with length .3m.  The real 

pivot point is attached to the imaginary one at a distance of .052m (the difference in 

lengths of the real and imaginary pendulums) from the pivot point of the imaginary 

pendulum.  The pivot point of the imaginary pendulum is considered to be 

stationary.  The real pivot point now moves with a sinusoidal motion, as specified in the 

problem.  If we want the amplitude of the real pivot point to match that specified by the 

problem, .01m, then we need the angular amplitude of the imaginary pendulum's 

oscillation to be: 



 

arcsin .01/.052 = 0.1935 radians 

 

This will also then be the amplitude of the oscillation of the real pendulum. 

 

The opening statement, giving the lengths of simple pendulums with periods 1.00s and 

1.10s,  uses T = 2 pi sqrt(L/g), the solution to a differential equation, which disqualifies 

this solution. 

 

 

11/17 2:48 

 

By definition the natural period is the period of the simple pendulum when the pivot is at 

rest. That, by dimensional analysis (using the fact that we have a unique way to get a time 

out of a simple pendulum dimensional quantities), gives the following relation between 

the period and the length of the simple pendulum: 

 

T = c (l/g)^(1/2)  = 1.0s      where g is gravity, l is the length of the simple pendulum (that 

we don't know) and c is a constant we also don't know (at least not without using calculus 

or some experimental evidence). 

 

Now we know from the problem that the system reaches a steady motion, and we argue 

that the steady motion, to be steady, has to be in phase with the sinusoidal motion of the 

pivot point that is forced to oscillate with period T'=1.1s, which means that when the 

oscillating pivot point is at its maximum right the pendulum is also at its maximum right 

(actually it could also be in counter phase if the pivot was moving with a period T' shorter 

than T). (the fact that being in phase or counter phase is a requirement of the steady 

motion is quite obvious, but just to make it explicit it's because by definition of a steady 

motion we don't want a motion with secular effects or quasi periodic effects). 

 

Assuming that we are in the small angle approximation (which we can't check right away 

but we have to assume if we are using in any meaningful way the definition of natural 

period), we can see that a motion in phase with the pivot point looks like a longer simple 

pendulum of which we can just see the inferior part (this is not true in general, since the 

length of our pendulum doesn't change while oscillating, while in the longer pendulum 

I'm describing the length of the part below a certain line would actually be longer when 

the pendulum is at it's minimum height than when it is at its maximum height, so this is 

why we need the small angle approximation and we need to consider the length as being 

constant). 

 

This means that our oscillating pivot point is just mimicking a "half-a-way" point of this 

longer simple pendulum (in the small angle approximation). 

 

Now, because we want the pendulum to be in phase with the pivot point, this implies that 

the natural period of this longer pendulum is the same as the pivot point period, which is 

T' = 1.1s. But T', as we just explained, has to be also the period of the longer pendulum, 

which is, again by dimensional analysis: 



 

T' =  c (l'/g)^(1/2)        where l' is the length of the longer pendulum, and again, we don't 

know l' and c. 

 

Now, because we are looking at the (longer) pendulum in the small angle approximation, 

we can look at two similar triangles defined by the (longer) pendulum itself. 

 

One triangle is defined by the length of the longer pendulum and the distance from the 

vertical (with respect of the imaginary pivot point of the longer simple pendulum itself). 

The other triangle is defined by the distance of the horizontal oscillating pivot point and 

the imaginary fixed pivot point, and the amplitude of the oscillating pivot point (half of 

it). 

 

Being the ratio of the two sides of these two triangles the same by euclidean geometry, 

we can write the following proportion: 

 

l'/(A'/2) = (l'-l)/(A/2)   where A is the amplitude of the oscillating pivot point, l'-l is the 

distance between the imaginary pivot point and the oscillating pivot point at it's 

maximum position, l' is the length of the imaginary longer pendulum, and A' is the 

amplitude we are supposed to calculate. 

 

Now, from the expressions of the periods given above, we can just plug in and get an 

answer for A', which is 

 

A' = A (T')^2/[(T')^2-(T)^2] = (1cm) (1.1s)^2/[(1.1s)^2-(1s)^2] = 5.76 cm 

 

which is the answer we were looking for. 

 

Now, three things are worth noting: 

 

1) Even if used in the formulae, we never actually needed the values l, l', c, g, which 

would not change the answer as long as we stay in the small angle approximation; 

 

2) from simple experimental observations, we do know what the constant c written above 

is, and that actually allows us to check that we really are in the small angle approximation 

for such periods and amplitudes (or lengths); 

 

3) if the period of the forced oscillation of the pivot was shorter than the natural period of 

the simple pendulum, then the above procedure could still be applied to get the solution, 

as long as we consider the counter phase movement of the pendulum (which is, when the 

pivot is at its maximum right, the pendulum is at its maximum left). This, also in the 

small approximation, would create an imaginary pivot at a point lower than the horizontal 

oscillating pivot, allowing us to use different lengths for the period and find a shorter 

period. 

 

This solution is correct.  
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Disqualified because the first statement 2 2

0 0l l ω ω=  is not justified, but merely stated. 
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answer 1.21cm 

 

Not a solution. 
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It was known by Galileo since the early 17
th

 century (long before Newton’s laws were 

expounded) that the period of a simple pendulum is proportional to the square root of its 

length. Or said another way, the length of a simple pendulum is proportional to its period 

squared.  

   l = kT 2
  

where k is a constant. 

 

Imagine a longer simple pendulum P1 of length l1 with fixed pivot and natural period 

T1=1.1 sec (identical to the excitation period of the pivot point of the given pendulum P0 

of length l0  and natural period T0 = 1 sec). Further imagine a point S on the longer 

pendulum P1 a distance d from the pivot of P1 (and distance l0  from its bob) that 

undergoes oscillatory (harmonic) motion with amplitude a = 1 cm when the amplitude of 

the bob of P1 is chosen appropriately. The motion of pendulum P0 in response to its 

harmonic pivot excitation hypothesized in the problem statement above is identical to the 

bottom portion of P1 configured as a simple pendulum. 

 

Consider the (roughly) triangular region swept out by the bob of P1 (and the bob of P0 ) 

with base aP we desire to calculate. Then by similar triangles 

 

aP

l1
=

a

d
=

a

l1 − l0

 

  

Thus since  l1 = kT1

2
  and l0 = kT0

2
 then 

 
2 2

1 1

2 2 2 2

1 0 1 0

1.1
5.76

1.1 1
P

al T
a a a cm

l l T T
= = = =

− − −   

 

Disqualified because the first statement, that “the length of a simple pendulum is 

proportional to its period squared” is not properly justified. [Historical “facts” don’t 

count. For example, it was also “known” long before Galileo that an object needs a force 

applied to it to keep moving – that’s what Aristotle said, and that’s what people believed 

for a thousand years, but it was not true.] 
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as der will be an increased amplitude nd will be greater than the amplitude of the signal, 

as the energies of bob's motion will also add up, nd we know dat d energy is proportional 

to amplitude squared and v=w*amplitude for max velocity, so the change in amplitude 

will be a function of energy, now the increase in energy will cause the amplitude to 

increase, and more increase means more increase in amplitude, and of course it will be 

proportional to the energy, so the amplitude will be equal to A = B |(w^2/w^2 - w'^2)|, 

where b= amplitude of sine motion, w = frequency of period, w' = frequency of sine 

motion. thus we get after solving = 5.76 cm. 

 

Judge for yourself. 

 

 


