Errata for The Feynman Lectures on Physics Volume I New Millennium Edition (submitted 6/19/2020)

The errors in this list appear in *The Feynman Lectures* on *Physics: New Millennium Edition* and earlier editions; errors validated by Caltech will be corrected in future printings of the *New Millennium Edition* or in future editions.

Errors are listed in the order of their appearance in the book. Each listing consists of the errant text followed by a brief description of the error, followed by corrected text.

last updated: 1/18/2020 12:40

copyright © 2000-2019 Michael A. Gottlieb Playa Tamarindo, Guanacaste Costa Rica <u>mg@feynmanlectures.info</u>

I:23-2, par 2

Now a wonderful feature of an exponential function is that $d(\hat{x}e^{i\omega t})/dt = i\omega\hat{x}e^{i\omega t}$.

Change made for clarification and consistency with Feynman's blackboard

Now a wonderful feature of an exponential function $x = \hat{x}e^{i\omega t}$ is that $dx/dt = i\omega x$.

I:23-2, par 2

... and so it is very simple to write immediately, by inspection, what the equation is for \hat{x} : every time we see a differentiation, we simply multiply by $i\omega$.

It is x that when differentiated with respect to time is multiplied by $i\omega$, and not \hat{x} , which has no dependence on time.

... and so it is very simple to write immediately, by inspection, what the equation is for x : every time we see a differentiation, we simply multiply by $i\omega$.

I:23-6, par 2

... the second derivative of \hat{q} is $(i\omega)^2 \hat{q}$; the first derivative is $(i\omega)\hat{q}$.

It is q that when differentiated with respect to time is multiplied by $i\omega$, and not \hat{q} , which has no dependence on time. $q = \hat{q}e^{i\omega t}$.

... the second derivative of q is $(i\omega)^2 q$; the first derivative is $(i\omega)q$.

I:23-6, par 3

Thus, since $\hat{I} = d\hat{q}/dt = i\omega\hat{q}$, ...

Inaccurate statement. \hat{I} and \hat{q} are constants. $q = \hat{q}e^{i\omega t}$ and $I = \hat{I}e^{i\omega t}$.

Thus, since $I = dq/dt = i\omega q$, ...